安徽同步卫星时钟安装

时间:2020年12月20日 来源:

    从而获得高稳定度和高准确度的频率信号[2]。本文设计驯服时钟是利用GPS授时接收机输出的PPS作为标准的秒脉冲信号对本地恒温晶振进行驯服。FPGA程序设计中主要是利用时钟计数法对本地晶振进行频率调整,以消除恒温晶振因老化、温漂等带来的累积误差。时钟计数法是FPGA对时钟的计数。首先通过对GPS秒脉冲两个相邻秒沿之间的时钟个数count1和本地秒脉冲两个相邻秒沿之间的时钟个数count2进行计数、对比,得到相应的时钟钟差值,假如钟差大,说明恒温晶振提供的频率存在较大误差,需要调整减少误差。然后把时钟钟差值转换给SPI总线数值,通过SPI总线写入DAC7512,DAC7512把接收到的数字量转换为模拟电压,实时地对本地晶振频率进行调整,使count1=count2即完成了驯服的过程,达到本地晶振长期稳定的效果。让恒温晶振上电先稳定,在检测到GPS秒脉冲输入时,延迟一个时钟产生本地秒脉冲。通过对比两个秒脉冲之间的计数差值对晶振频率进行调整。GPS秒脉冲与发射系统产生的秒脉冲结果对比如图6所示。接收机抗远近效应程序设计在室内,由于空间狭窄,伪卫星布置的高度相对比较低,容易发生远近效应。在某些位置,当来自不同伪卫星的信号强度差异大于某个门限时,就会产生远近效应。淄博正瑞电子公司依托便利的区位和人才优势。安徽同步卫星时钟安装

    随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。下面小编为大家介绍GPS时钟的相关知识。无线GPS时钟系统构成:一级母钟设于控制中心,包括外部时间信号接收机(GPS)、铷钟、时钟信号处理、产生及分配单元,采用主、备两个母钟组成,主备钟之间能够自动和手动切换、互为备用。外部时钟信号接收装置由GPS和铷钟信号接口单元组成,可接收GPS和铷钟校时信号(并预留其它接入),两路互为备用,并可自动倒换;GPS时钟源的频率准确性大于10-10,后备铷钟的频率准确性大于10-9。中心一级母钟接收外部标准时间信号。时钟系统的网管设备设于控制中心通信网管中心,用于本工程时钟子系统的监控。中心一级母钟采用19英寸标准机柜,高度为2200mm。子钟通常设置于控制中心调度大厅及有关管理用房,车辆段有关管理用房。母钟与子钟之间的信号传输可以采用RS422接口也可以采用以太网接口方式,本工程采用以太网接口。子钟的电源可以采用集中供电也可以采用就近取电方式,建议采用就近取电方式。安徽同步卫星时钟安装欢迎各界朋友莅临参观。

    各伪卫星之间的时钟的同步是伪卫星应用技术中的难点和关键。由于伪卫星主要用于在卫星信号遮挡地区为用户提供较为准确的定位信息,对授时信息的准确性要求不高,因此只需要给各个伪卫星提供相同的时钟同步信号即可达到应用的要求。现有的时钟同步电路技术需要通过高精度时钟结合已知的信源和伪卫星位置对伪卫星进行时间校准,所需的捕获及编解码电路消耗资源较多,成本较高;还有一种方法通过主站发射时钟信号和同步信号实现时钟同步,同步信号通过插入特定的码元进行检测实现,该部分也将消耗大量的硬件资源。针对现有的时钟同步方法的不足,必须通过设计一种节约资源的硬件电路系统,实现伪卫星模块的载波信号的同步和信息码调制的同步。技术实现要素:针对现有技术的不足,本发明公开了一种用于伪卫星时钟同步的电路系统。本发明还公开了上述伪卫星时钟同步的电路系统的工作方法。本发明的技术方案为:一种用于伪卫星时钟同步的电路系统,包括:一个基准信号源模块和4个及以上的伪卫星信号生成模块;所述基准信号源模块用于为各个伪卫星信号生成模块提供时钟信息和同步信息,所述时钟信息用于使伪卫星信号生成模块中的时钟恢复电路恢复产生时钟信号。

    时钟源用于提供标准时钟信号,授时系统主要包括无线授时和有线授时两类。无线授时系统包括美国GPS导航系统、欧洲伽利略(Galileo)导航系统、中国北斗导航系统和俄罗斯全球导航卫星系统(GLINASS)等;有线授时系统以网络或专线作为载体,例如通信网络授时系统。目前变电站中主要应用的时钟源为GPS卫星授时和北斗授时技术。(1)GPS卫星授时GPS(GlobalPositioningSystem)即全球定位系统,是美国从20世纪70年代开始研制的。GPS系统由专门的接收卫星发射的信号,可以获得位置、时间和其他相关信息。GPS系统每秒发送一次信号,其时间精度在100ns以内。其时间信息包含年、月、日、时、分、秒以及1PPS(标准秒)信号,因而具有很高的频率精度和时间精度。在综自变电站中采用GPS卫星同步时钟可以实现全站各系统在统一时间基准下的运行监控和事故后的故障分析。(2)北斗授时技术北斗卫星导航系统是中国**开发的全球卫星导航系统,类似于美国的GPS和欧洲的伽利略定位系统,它提供海、陆、空的全球导航定位服务,目前已经发展至第二代,授时精度可以达到20ns。目前已将13颗北斗导航系统组网卫星顺利送入太空预定转移轨道。预计在2020年建成由30多颗卫星组成的。淄博正瑞电子在客户和行业中树立了良好的企业形象。

    节省了系统的成本。2.本发明通过设计一种时钟同步的硬件电路系统,进行各颗伪卫星的时钟同步,保证各颗伪卫星发射的伪卫星信号的载波相位和初始码相位相同,提高了伪卫星系统中伪距观测值的准确性。3.本发明通过一个基准信号源模块为整个伪卫星系统提供参考时钟信息,由与基准信号源模块完全等距的时钟恢复电路进行时钟的恢复,保证了恢复出的载波相位的高精度同步。4.本发明采用相位跳变结合脉冲宽度检测电路进行同步信号的获取,电路结构较为简单,相比较编解码确定同步信号的方法,节约了硬件资源,提高了初始码相位的精度,进而提高伪卫星定位系统的定位精度。5.本申请方案整体系统结构简单,无需本地时钟,无需精细授时,信源模块和伪卫星信号模块之间采用无线发射的方式,节省了光纤、监测站和网络管理中心等成本。且本申请方案针对各个伪卫星模块之间的信号同步问题,不仅是原理性的解决方案,而是设计了一种具体的电路级的时钟同步系统。附图说明图1是本发明所述伪卫星时钟同步系统的原理框图;图2是本发明所述的基准信号源模块的电路图;图3是本发明所述的伪卫星信号生成模块的电路图。图4是本发明所述的脉冲宽度检测电路的一种实现电路图。淄博正瑞电子将“素质化、专业化、人性化、制度化”作为公司管理理念。安徽同步卫星时钟安装

淄博正瑞电子以诚信为根本,以质量服务求生存。安徽同步卫星时钟安装

    4)所述的脉冲宽度检测电路通过检测鉴相器up端的输出信号以产生将各颗伪卫星的信息码同时调制到载波上的同步信号。所述脉冲宽度检测电路将鉴相器up端的脉冲信号进行延时处理,再与未延时的原始信号进行与非运算,作为输出标志信号。在系统安装时,通过对延时时间的合理调整,可以改变检测电路的阈值,保证每次相位跳变时只能检测到宽的一个脉冲信号,即只产生一个负脉冲信号。检测到负脉冲信号时,将进入步骤(5),当检测不到负脉冲信号时,输出控制模块不会将信息码调制到载波信号上。此时系统将继续循环检测负脉冲信号,直到出现为止。(5)所述信息码生成模块中的所述输出控制模块在接收到脉冲宽度检测电路输出的负脉冲之后,开始将信息码调制到载波信号上,保证各个伪卫星生成模块的初始码相位相同。同时,所述的输出控制模块在分频器1和分频器2的作用下,控制信息码生成模块在接收到个同步信号之后,按照频率,即只需要同步一次,各个伪卫星生成模块就能根据个同步信号产生后续的同步信号,保证持续同步发射伪卫星信号。而所述的基准信号源模块产生的相位突变是周期性的,可以用于周期性的同步,减少由于只经过一次同步产生的时钟的偏差,保证系统的稳定性。。安徽同步卫星时钟安装

信息来源于互联网 本站不为信息真实性负责